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Abstract—The sweep line technique has been recently
adapted to the sphere in order to build Voronoi diagrams
of points on its surface. The resulting algorithm has proved
to be simple and efficient, outperforming the freely available
alternatives, which compute convex hulls of point sets in 3D.
In this paper, we introduce two sweep algorithms for updating
Voronoi diagrams, one for deleting and another for inserting
a site, which are applicable to points on the sphere surface or
on the plane.

The algorithms operate directly on the doubly connected
edge lists that implement the Voronoi diagram. This makes
them preferable when the intended data is the Voronoi dia-
gram, which happens, for instance, when natural neighbour
interpolation is performed.

Both algorithms require linear space. Besides, insertion runs
in linear time, which is worst-case optimal, whereas deletion
runs in super-linear time. Although the deletion running time
is not asymptotically optimal, both algorithms cope very well
with degenerated cases, are efficient, and are practical to
implement. Experimental results in both domains reveal that
their performances are better than or similar to those of the
CGAL library, which work on Delaunay triangulations.

Keywords-deletion and insertion in Voronoi diagrams; spher-
ical Voronoi diagrams; doubly connected edge lists.

I. INTRODUCTION

A Voronoi diagram is a useful tool to analyse geomet-
rical data. The analyses often require the computation of
a Voronoi diagram from an initial large data set, which
must be updated afterwards by inserting or removing a small
number of sites. The usual way to update a Voronoi diagram
is by performing the equivalent operations on its dual, the
Delaunay triangulation.

In an insertion, all triangles that are in conflict with the
new site are removed, creating a hole, which is trivial to
triangulate (in linear time). This is a well-known operation,
which is part of the incremental algorithm for computing
the Delaunay triangulation on the plane [10] or on the
sphere [12].

Deletions are not so straightforward and the research
has been focused mainly on the planar domain. Firstly, all
triangles incident to the given site are deleted, creating a
hole, which also needs to be triangulated. There are several
algorithms for this purpose, whose running times depend on
the number m of neighbours of the site to be removed.

The algorithm of Aggarwal et al. [1] is of great theoretical
interest, because it runs in linear time in the worst-case.
Nevertheless, it is too intricate to implement.

Devillers’s algorithm [5] trades some efficiency for sim-
plicity, running in O(m logm) time. The hole, which is
delimited by a polygon, is triangulated incrementally, taking
into account all ears of the polygon. Every ear has a priority,
which is given by the power of the site that is being deleted
with respect to the circle that circumscribes the ear. As an
ear with the smallest priority is proved to belong in a final
triangulation, it is selected and inserted into the Delaunay
triangulation, shrinking the polygon. This process is iterated
until a single triangle remains.

A similar but asymptotically slower alternative is the
algorithm of Mostafavi et al. [11], whose running time is
quadratic. It also considers the ears of the hole boundary, but
does not rely on priorities. Instead, in each step, every ear
is tested to determine if it belongs to the final triangulation.
The test succeeds when the circle that circumscribes the ear
does not contain any other vertex of the polygon.

Since the average vertex degree is six, quadratic but
simpler algorithms may be competitive in practise. This is
the case of boundary completion, the algorithm implemented
in CGAL up to release 3.6.1 [2]. Here, an arbitrary edge
of the polygon is selected and the corresponding triangle
(which is not necessarily an ear) is found out and inserted,
possibly dividing the polygon. The advantage of this strategy
is that a polygon division may strongly reduce the number
of comparisons at later stages.

It is important to mention that the algorithm of Chew [3],
which builds the Voronoi diagram of a set of points located
at the vertices of a convex polygon, has been adapted by the
author to delete a site from a Voronoi diagram. It is a ran-
domised algorithm with linear expected running time. The
diagram of the region to update is computed incrementally,
adding sites by a random order. A site is added as if its
region was carved on the diagram, and the corresponding
boundary is found through bisector intersections. The main
drawback of this approach stems from the construction of
the intermediate diagrams, because edges computed in a
step may not belong to the final result. As we will see,
our solution minimises changes: the edges of the original



diagram are reused and simply linked to different endpoints.
In spite of not being explicitly mentioned in the literature,

the above algorithms are all adaptable to the spherical
domain. The large majority relies on the common in-circle
tests, while Chew’s algorithm is based on bisector intersec-
tions. Besides, the one of Devillers requires only a suitable
redefinition of priority.

In this paper, we introduce algorithms for inserting and
deleting a site directly in a Voronoi diagram, which avoids
dealing with two distinct data structures. They operate on
the doubly connected edge lists (DCELs) that are commonly
used to implement Voronoi diagrams [4]. A DCEL provides
direct access to the boundary of a site region, which is
advantageous to some applications. Needless to say, with a
Delaunay triangulation, region boundaries must be computed
(by traversing the corresponding adjacent triangles). Notice
that our algorithms do not depend on any particular DCEL
feature, so they can work with other Voronoi diagram
implementations, such as the Quad-Edge [9].

Natural neighbour interpolation [13] is an example of
application that deals with Voronoi regions. In this interpola-
tion method, the estimated value vp at an arbitrary point p is
easily defined by supposing that p is inserted in the Voronoi
diagram of the data set, stealing areas from its neighbours to
form its own region. Value vp is the weighted average of the
neighbour values, where the weights are the corresponding
(relative) stolen areas. Thus, natural neighbour interpolation
may be seen as a special case of site insertion.

Our algorithms are based on the sweep technique, which
has already proved to produce simple and efficient proce-
dures, not only on the plane [4], [8] but also on the sphere
surface [7]. Both require O(m) space. Concerning running
times, they are O(m logm) for deletion and O(m + t) for
insertion, where t is the number of neighbours of the site
nearest to the one that is inserted.

The rest of the paper is organised as follows. We start, in
Section II, by delimiting the changes the update algorithms
have to make to the Voronoi diagram. Then, Section III
describes the basics of the sweep process, and Section IV
presents the operations required on a DCEL. The deletion
and the insertion algorithms are introduced and analysed in
Sections V and VI. After that, Section VII reports on the
experimental results, and Section VIII concludes with some
comments on the research done in the paper.

II. CHANGES TO PERFORM

Let Vk denote a Voronoi diagram with k sites, where
sj and Rj are the coordinates and the region of site j,
respectively. Without loss of generality, we consider that the
insertion algorithm computes Vk by adding site sk to Vk−1,
whereas the deletion algorithm computes Vk−1 by removing
site sk from Vk.

Updates require only the recomputation of a small part
of the Voronoi diagram, due to the properties of maximum
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Figure 1. (a) Dashed edges form a connected acyclic graph (with two
inner edges). (b) Wave front sweeping the region to update.

empty circles. The algorithms scan the region to be updated
with the same technique used by Fortune’s algorithm for
computing a Voronoi diagram of sites on the plane [4], [8].
The main difference is that, in our case, the sweep line is
a circle centred at site sk. The deletion algorithm sweeps
Rk with the wave front starting on the region border and
ending as a “line segment” in its interior. The insertion
algorithm does the opposite: the wave front starts being a
“line segment” with an endpoint at sk and grows until it
reaches the region border. Fig. 1b illustrates both processes.

The algorithms find a set of edges (and vertices), some
of them to be added to Vk (in a deletion) or removed from
Vk−1 (in an insertion). Apart from polygon Rk, which is
computed in an insertion, this set forms a connected acyclic
graph G (see Fig. 1a). The inner edges of G are those edges
whose both endpoints are in the interior of Rk.

The size and order of G may be deduced from the number
m of neighbours of sk. For n sites on the plane or on the
sphere surface, Euler’s formula states that e ∝ 3n and v ∝
2n, where e is the number of edges and v is the number
of vertices [4]. Since the update of a single site implies a
variation of three edges and two vertices in the diagram,
graph G has m − 3 inner edges, whose endpoints define
m− 2 vertices. So, to some extent, in a deletion, a polygon
with m edges is replaced by a graph with m−3 inner edges,
whereas, in an insertion, a graph with m− 3 inner edges is
replaced by a polygon with m edges.

III. HYPERBOLIC SWEEP

Both algorithms sweep Rk with a circular line, called the
sweep circle, centred at sk. The wave front is made of arcs
of hyperbola, where each arc is defined by the sweep circle
and a site. Before detailing the algorithms, we will show how
a single arc of hyperbola sweeps half of the domain, how
the intersections of two arcs scan half of the sites bisector,
and how three arcs may define a vertex. Since these matters
depend on the domain, Section III-A is dedicated to the
sphere, while Section III-B deals with the plane.

A. Hyperbolic Sweep on the Sphere

The spherical domain is swept by a circular line, following
the approach introduced by Dinis and Mamede [7]. In
general, a point p on the sphere is defined by a pair (pρ, pθ),
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Figure 2. Scan of a half-sphere by a hyperbola (when r increases).
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Figure 3. Scan of the half-bisector mab by the intersections of two
hyperbolas (when r increases).

where pρ is the colatitude and pθ is the longitude. But, in
order to simplify some expressions, p may be given in 3D
coordinates, which will be denoted by −→p . We also assume
that the sweep circle is always centred at the north pole o,
that is, sk = o = (0, 0). As a consequence, the radius of the
sweep circle, which is the length of an arc of great circle,
is the colatitude of a parallel.

Let then a = (aρ, aθ) be a site on the sphere and r be the
radius of the sweep circle. Now, consider the loci of points
i = (iρ, iθ) such that

|i− a| = iρ + r . (1)

So, i is the centre of a circle tangent to the sweep circle (with
o in its interior) that contains a on its border. Equation 1
defines a branch of a spherical hyperbola whose foci are a
and o (see Fig. 2). To simplify, these spherical hyperbola
arms will be simply called hyperbolas.

To start with, recall that spherical hyperbolas are always
closed curves (and congruent to spherical ellipses). The
shape of the hyperbola is delimited by a spherical lune
whose dihedral angle is λ = 2 arccos(csc(aρ/2) sin(r/2)).
At r = 0, λ = π and the hyperbola is degenerated into
the foci bisector (which is a great circle). As r increases, λ
decreases and the hyperbola closes in toward o (as in Fig. 2).
Finally, when r = aρ, λ = 0 and the hyperbola is also
degenerated, now into the arc of great circle that connects o
to the antipode of a. Therefore, the hyperbola monotonically
scans the half-sphere (that contains o) defined by the two
foci bisector, as r varies from 0 to aρ.

The intersections of two hyperbolas, generated by sites a
and b, scan half of the sites bisector. Let then b = (bρ, bθ)
be another site such that bρ > aρ (c.f. Fig. 3), and mab,
mao, and mbo be the bisectors between sites (a, b), (a, o),
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Figure 4. Finding a vertex by an arc elimination.

and (b, o), respectively. First of all, remark that, due to (1),
every intersection point i satisfies |i− a| = |i− b| = iρ + r,
which means that i lies on mab.

The intersection points are at antipodal positions when
r = 0, because the hyperbolas coincide with mao and
mbo, which are both great circles. As r increases, both
intersections move towards each other, until they coincide.
This happens for r = aρ = min(aρ, bρ), when one of the
hyperbolas completes its sweep.

To understand how vertices are found, let c = (cρ, cθ)
be a third site. Without loss of generality, we assume that
aρ < cρ, and that a, b and c are in strict clockwise order
around o (as in Fig. 4). We are interested only in the inner
envelope of the three hyperbolas with respect to o. So, let
〈a〉, 〈b〉, and 〈c〉 be the three arcs of hyperbola, whose
common focus is o, 〈a,b〉, 〈b,c〉, and 〈c,a〉 be the corre-
sponding arc intersections, and v = (vρ, vθ) and r{a,b,c} be
the centre and the radius of the circle that circumscribes the
three sites. The issue is to determine the conditions under
which arc intersections 〈a,b〉 and 〈b,c〉 meet at v, and arc
〈b〉 disappears. But 〈a,b〉 and 〈b,c〉 effectively scan v if
〈c,a〉 does not. To check if v is reached by 〈c,a〉, we may
compare the relative position of v with respect to the great
circle o a (because aρ < cρ). So, arc 〈b〉 disappears if:

(−→o ×−→a ) · −→v < 0 (v is scanned by 〈b〉). (2)

Notice that −→o ×−→a is never the zero vector because sites a,
c, and o are distinct, and aρ < cρ implies that a and o are not
at antipodal positions. The elimination of 〈b〉 occurs when
the sweep circle radius r = r{a,b,c}− vρ. Similar conditions
apply if c is closer to o than a.

B. Hyperbolic Sweep on the Plane

Now, half-spheres are replaced by half-planes, great cir-
cles by lines, arcs of great circle by line segments, and the
great circle distance by the Euclidean distance. In this case,
we consider that points p = (pρ, pθ) are given in polar
coordinates, and that −→p stands for p in 2D coordinates.
Furthermore, we still assume that sk is placed at the origin
o, i.e., o = sk = (0, 0).

In this context, given a site a = (aρ, aθ) on the plane and
the sweep circle radius r, the loci of points that satisfy (1)
define a branch of hyperbola whose foci are a and o. The
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Figure 5. Scan of the half-bisector mab by the intersections of two
hyperbolas, when a . o intersects mab (and r increases).
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Figure 6. Scan of the half-bisector mab by the intersections of two
hyperbolas, when a . o does not intersect mab (and r increases).

hyperbola parameters depend on aρ and r: ε = aρ/r is the
eccentricity, and λ = arccos(r/aρ) is the asymptote slope.

This branch of hyperbola (also abbreviated to hyperbola)
sweeps half of a plane (containing o), as r varies from 0 to
aρ. When r = 0, it coincides with the bisector line between
a and o; when r increases, the hyperbola asymptotes close
in toward o; and when r = aρ, the hyperbola is the half-line
with origin in o towards the opposite direction of a.

Although the intersections of two hyperbolas still scan
half of the sites bisector, three distinct cases have to be
analysed. In all of them, b = (bρ, bθ) is a site such that
bρ > aρ, and mab, mao, and mbo are the bisector lines
between sites (a, b), (a, o), and (b, o), respectively.

We start by assuming that a, b, and o are not co-linear
and that the half-line a . o intersects mab (as depicted in
Fig. 5). Initially, when r = 0, the hyperbolas coincide with
mao and mbo, and intersect at i0. When r = distance(o, a b),
one asymptote of each hyperbola will be parallel to mab

(see Fig. 5b) and a second intersection (which begins at
infinity) starts to be traced. The scan of half of mab ends
when r = aρ because, since a is closer to o, its hyperbola is
the first to complete the half-plane sweep. At that moment,
both intersections meet (the one that started at i0 and the
one that started at infinity).

In a second configuration, the three sites are still not co-
linear, but the half-line a . o does not intersect mab (c.f.
Fig. 6). The half-bisector scan is performed similarly, except
that it takes place when the sweep circle radius r varies from
0 to distance(o, a b). At the beginning, the two arcs intersect
at i0 and, at the end (Fig. 6b), the asymptotes of the same
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Figure 7. Finding a vertex in an originally closed envelope.
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Figure 8. Finding a vertex in an artificially closed envelope.

arcs are parallel to each other and to mab. Remark that, in
this case, only one side of each hyperbolic arc is brought
into play.

The third case is when all sites are co-linear, and o is
between a and b. Now the two hyperbolas face each other
and both sides intersect at all times. The two intersection
points begin at infinity and join half way between a and b
(when r = min(aρ, bρ)).

In the plane, the wave front is also the inner envelope
of the hyperbolas (with respect to o) and its topological
changes signal vertices locations. Let then c = (cρ, cθ)
be another site in the conditions shown in Fig. 7. That
is, aρ < cρ and a, b and c are in strict clockwise order
around o. The three arcs of hyperbola are 〈a〉, 〈b〉, and
〈c〉, the corresponding arc intersections are 〈a,b〉, 〈b,c〉, and
〈c,a〉 (provided they exist), and the centre and the radius of
the circle circumscribing the three sites are v = (vρ, vθ)
and r = r{a,b,c}. In this case, for arc 〈b〉 to disappear,
intersections 〈a,b〉 and 〈b,c〉 must converge and must reach
v. Notice that the latter depends on the relative position of
v with respect to line o a (because aρ < cρ). So, arc 〈b〉
disappears if:

(
−−−→
c− a

iπ
2

)
·
−−−→
b− a < 0 (intersections converge),(

−→
a
iπ
2

)
·
−→
v > 0 (v is scanned by 〈b〉)

(3)

where −→x iθ means −→x rotated θ clockwise. Once more, 〈b〉
is eliminated when the sweep circle radius r = r{a,b,c}−vρ.

The arc elimination process may be extended to non-
closed envelopes by considering an auxiliary arc (drawn with
a dot line in Fig. 8a) that connects the two diverging half-



b
′

c

e
′

c
′

da

d
′

a
′

eb

(a)

b
′

e

c
c
′

d

e
′

a

d
′

a
′

b

(b)

Figure 9. Edge flip by rotating e clockwise.
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Figure 10. Inserting or removing a pair of edges.

lines. This auxiliary arc also disappears in the course of the
sweep, like a regular one. In the case illustrated in Fig. 8,
where the half-line a . o and mac intersect, the auxiliary
arc disappears at r = distance(o, a c) (see Fig. 8b), because
the asymptotes of the two adjacent arcs become parallel and
〈a,c〉 begins to scan mac.

The trick of adding auxiliary arcs to open envelopes of
hyperbolas allows to design the update algorithms as if all
regions were bounded. For this purpose, we suppose that an
auxiliary site, located at infinity, was inserted in the Voronoi
diagram. Then, every unbounded region is artificially closed
by adding an auxiliary edge, which represents an imaginary
bisector between the corresponding site and the auxiliary
site.

IV. OPERATIONS ON A DCEL

The algorithms make use of three operations on a DCEL:
edge flipping, and inserting or deleting a pair of edges.

The edge flip operation is illustrated in Fig. 9, where an
edge e and its four adjacent edges are represented by their
twin half-edges. When e is flipped, two adjacent edges (b
and d) are reattached to the opposite endpoint of e, while
the other two adjacent edges (a and c) remain unchanged.

Notice that, because edges are always shared by two
regions, an edge flip removes an edge from the boundaries
of two adjacent regions and adds it into the boundaries of
two other adjacent regions. In particular, when an edge e is
flipped, e is effectively deleted from the boundaries of the
regions to which it belongs (c.f. the changes from Fig. 9a
to Fig. 9b). Besides, the flip of an edge incident to a region
has the effect of adding that edge into the region boundary
(as it can be seen when e is flipped from Fig. 9b to Fig. 9a).
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Figure 11. Deleting a site.

The deletion of a site is performed by contracting its
region, releasing the edges into the neighbouring regions
through a succession of edge flips, until the boundary is
reduced to two edges. Then, this pair of edges is removed
(in a single operation).

Basically, the insertion of a site performs that sequence
of basic operations in the opposite direction. It begins with
the insertion of a pair of edges, which is the new site initial
boundary. Then, that boundary is expanded by a sequence of
edge flips, absorbing edges from the neighbouring regions,
until it reaches its final shape.

Given an edge e and a new site sk, the insertion of a pair
of edges associated with sk in e consists in replacing e with
four edges, adding two new endpoints, i1 and i2, as depicted
in Fig. 10 (from left to right). The inner arcs are both made
incident to i1 and i2. Actually, those arcs are self-loops,
because initially i1 and i2 coincide. The outer edges e1 and
e2, which result from the split of e, are incident to a new
endpoint and to one of the original vertices. As we have
already mentioned, this operation will be used to create and
initialise the DCEL of sk with the two inner arcs.

When sk is removed, its DCEL ends with two arcs whose
endpoints are all at the same location. The other two arcs
that are incident to those endpoints (which are e1 and e2 in
Fig. 10b) form up an edge of Vk−1. So, given the DCEL of
sk, the deletion of the corresponding pair of edges replaces
e1 and e2 by a single edge (as it is shown in Fig. 10a).

V. DELETION ALGORITHM

The first algorithm deletes site sk from Vk. Let then si =
(siρ, s

i
θ), for every i = 0, . . . ,m − 1 and some m < k, be

the neighbours of sk (in Vk). For the sake of simplicity, we
assume that sk = (0, 0) (that is, it is located at the north
pole or at the plane origin) and s0 is its nearest neighbour.

The sweep circle (centred at sk) together with the m
neighbours of sk define m hyperbolas. The inner envelope
of these hyperbolas is the wave front. It coincides with Rk
when the sweep circle radius r = 0. As r increases, arcs
are eliminated from the wave front, signalling the presence
of new vertices and new edges. The process ends when the
hyperbola generated by s0 completes its sweep, that is, when
r = s0ρ. So, the deletion algorithm can somehow be seen as
a particular case of Fortune’s algorithm [4], [8] where there
are only circle-events (c.f. Fig. 11).



Algorithm 1 Delete sk from Vk
1: list: w ← Vk.DCEL(sk) {wave front is Rk}
2: array: a← ∅ {auxiliary array of length w.size()}
3: for every e in w do
4: k ← w.compute priority(e)
5: if k < +∞ then
6: a.add((k, e))
7: end if
8: end for
9: queue: q ← build queue(a) {build the priority queue}

10: while q 6= ∅ do
11: (k, e)← q.delete min()
12: p← w.previous(e)
13: n← w.next(e)
14: kp ← w.compute priority(p)
15: q.insert or update or delete(p, kp)
16: kn ← w.compute priority(n)
17: q.insert or update or delete(n, kn)
18: w.flip edge(e)
19: end while
20: Vk.delete pair edges(w) {w has 2 elements}

Algorithm 1 starts by initialising the wave front with the
Rk DCEL (line 1) and, for each one of the initial arcs, it
checks if the arc may disappear (that is, if (2) or (3) holds).
If that is the case, the corresponding circle-event is added
to a priority queue, which is ordered by ρ (lines 2–9). Then,
while the priority queue is not empty, an event is removed
and processed (lines 10–19). The event processing deletes an
arc from the wave front (through an edge flip, which leaves
a vertex behind), and updates the priorities associated with
its two adjacent arcs. When the queue is exhausted, the wave
front has two arcs which scan the same edge of the Voronoi
diagram. Therefore, it remains to discard those arcs and to
appropriately unite the split edge (line 20).

The proof of Proposition 1 (which is omitted due to the
lack of space) assumes that the priority queue is imple-
mented with a binary heap and an array (which associates
every event in the priority queue with its position in the
binary heap) and that every arc in the priority queue has
a pointer to the corresponding DCEL cell of the Voronoi
diagram. Recall that the number of processed events is m−2.

Proposition 1: Algorithm 1 deletes a site with m neigh-
bours in O(m logm) time using O(m) space.

As a matter of fact, our algorithm is quite similar to that
of Devillers [5], exchanging edges for ears and vertices
for triangles. The main difference relies on the priority
definition, and the power of a site with respect to the
circle circumscribing an ear involves the computation of
the circle circumscribing three points (which is all we need
to define a priority). Because of this high cost, simpler
quadratic solutions are reported by the author to run faster
in practise [6].
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Figure 12. Inserting a site.

VI. INSERTION ALGORITHM

Conceptually, the insertion algorithm (illustrated in
Fig. 12) mimics the deletion algorithm in reverse order. As
in the previous section, let sk be located at the north pole
or at the origin, and s0 be the closest site to sk. The sweep
circle is also centred at sk, but now its radius decreases from
s0ρ to zero. Like before, the wave front is the inner envelope
of all hyperbolas. Recall that all regions are closed.

Let e0 be the edge of R0 that is intersected by the
half-great circle (respectively, half-line) s0 . sk, i be that
intersection point, and s1 be the neighbour of s0 that shares
e0. The initial wave front (c.f. Fig. 12a) has two arcs, one
generated by s0 and the other by s1. Moreover, it is the arc of
great circle (respectively, the line segment) whose endpoints
are sk and i, and the two arc intersections coincide with i.
As r decreases, the two arcs of hyperbola widen out and
their intersections scan e0 until a third arc becomes part of
the wave front (see Fig. 12b). This occurs when one of the
arc intersections reaches a vertex v of Vk−1 (which is an
endpoint of e0). If the maximum empty circle γ of v (in
Vk−1) contains sk, the vertex is in conflict with sk and must
be removed. Notice that v = (vρ, vθ) is in conflict with sk
if rγ − vρ ≥ 0, where rγ is the radius of γ. In that case, an
event is scheduled so that the wave front gains an arc and
two new arc intersections, which will scan two new edges.
The priority of that event is given by r = rγ − vρ.

So, the task of the circular sweep is basically to find out
and remove all vertices (and edges) that are in conflict with
the site to be inserted, which characterise graph G referred
to in Section II. But, since G is connected and acyclic, its
extent is easily computed with a (partial) traversal of Vk−1

that starts at some position known to belong to G. That
is why edge e0 will play a crucial role. It is important to
notice that the diagram traversal may be performed in any
order (that is, event priorities are irrelevant), as all scheduled
events are independent and must be processed.

The first step of Algorithm 2 is to find edge e0 (lines 1–
6). The wave front begins with two arcs (line 7), whose
intersections are on e0, and the event queue is created
(line 8). Then, two vertices are reached (the endpoints of
e0) and, if they are in conflict with sk, the corresponding
events are added into the queue (lines 9–15). When an event
is processed, two new vertices are found and “enqueued”



Algorithm 2 Insert sk in Vk−1; s0 is the site nearest to sk
1: for every e in Vk−1.DCEL(s0) do
2: if s0 . sk intersects e then
3: e0 ← e {initial edge found}
4: break
5: end if
6: end for
7: Vk−1.insert pair edges(e0, sk) {Rk first 2 arcs}
8: queue: q ← ∅ {event queue is a FIFO}
9: if Vk−1.exists conflict(e0.origin(), sk) then

10: q.enqueue(e0)
11: end if
12: e1 ← Vk−1.twin(e0)
13: if Vk−1.exists conflict(e1.origin(), sk) then
14: q.enqueue(e1)
15: end if
16: while q 6= ∅ do
17: e← q.dequeue()
18: e′ ← Vk−1.previous(e)
19: if Vk−1.exists conflict(e′.origin(), sk) then
20: q.enqueue(e′)
21: end if
22: e′′ ← Vk−1.previous(Vk−1.twin(e′))
23: if Vk−1.exists conflict(e′′.origin(), sk) then
24: q.enqueue(e′′)
25: end if
26: Vk−1.flip edge(e)
27: end while

providing they are in conflict with sk (lines 18–25). In
addition, one arc and two arc intersections are always added
into the wave front, which is done by an edge flip in the
Voronoi diagram (line 26). This procedure is repeated until
all scheduled events have been processed. At that moment,
all edges of Rk are known as they correspond to the wave
front arcs (when the sweep circle radius is zero).

The following result is a consequence of the queue policy.
Proposition 2: Algorithm 2 inserts a site sk in O(t+m)

time using O(m) space, where t is the number of neighbours
of the site nearest to sk in the initial Voronoi diagram and m
is the number of neighbours of sk in the resulting Voronoi
diagram.

Even though the algorithm has been designed according
to the sweep technique, its final version turns out to perform
a graph traversal, like the insertion step of the incremental
algorithm for computing a Delaunay triangulation. The main
difference is that they update different data structures.

VII. EXPERIMENTAL RESULTS

Now we present some experimental results that show how
our update algorithms compare with those provided by the
CGAL software library [2]. CGAL has been chosen because
it is widely used, academically sound, and freely available in

source code form. In the planar domain, we have compared
our algorithms with the CGAL update algorithms that run
on a Delaunay triangulation. In the spherical domain, since
CGAL does not offer Delaunay triangulations of sites on
a sphere surface, we have resorted to the Delaunay trian-
gulation of points in 3D, which provides the convex-hull.
Notice that any triangulation is suitable, but that is the only
one where insertions and deletions can be made.

The CGAL (incremental) insertion algorithms are similar
in both domains. First, there is a walk in the triangulation,
which begins at an arbitrary location, to find a triangle (or
a tetrahedron) in conflict with the new site. Then, the site
is inserted. For our purposes, we have measured only the
running times of the insertion phase.

As we have already said, in the plane, up to CGAL 3.6.1
deletion is performed with the boundary completion al-
gorithm. Since CGAL 3.7 (the last release, so far), the
library uses a decision tree (by Devillers [6]) to choose the
algorithm that is executed, which depends on the number
m of neighbours of the site to be deleted. There is a spe-
cialised function for each m = 3, . . . , 7, and the boundary
completion routine is invoked only in the remaining cases.
For this reason, in the plane our experiments have involved
both deletion versions. Deletion in 3D starts by deleting all
tetrahedrons incident to the site to be removed, which creates
a hole. At the same time, all neighbouring sites are collected.
Then, the algorithm computes the Delaunay triangulation of
the neighbours, which is used to sew up the hole.

Due to the low average number of neighbours, we dis-
carded the priority queue from our deletion algorithm.
In fact, the algorithm performance improves when the
delete min operation is implemented with a sequential
traversal of the wave front, which allows to eliminate all
insertions, updates, and deletions of events.

Our algorithms have been coded in the C language and
compiled with the GNU GCC C compiler (version 4.3.2)
with optimisations. Programs have been executed on a
computer running Linux, equipped with an Intel Xeon E5160
processor, running at 3.00 GHz, with 4 MB of cache.

Concerning data sets, sites are at random positions, dis-
tributed uniformly either on the [0, 1] × [0, 1] square or
on the surface of the sphere. Locations on the sphere are
in the 3D Cartesian coordinate system, so that running
times can be comparable. For each domain, five independent
data sets have been generated, with sizes 0.1 × 106, 0.2 ×
106, . . . , 1.0 × 106. Every presented result is the mean of
the five measurements obtained from the executions with
the sets of the same domain and size.

The execution of an insertion algorithm with a data set
consists in the computation of the corresponding Voronoi
diagram or Delaunay triangulation, by inserting sites succes-
sively in no particular order. After having built the Voronoi
diagram or the Delaunay triangulation of a data set, the
execution of a deletion algorithm removes all sites one by
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Figure 13. Average running times on the sphere. (a) Sweep algorithms.
(b) CGAL algorithms.

0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

Sweep alg.

CGAL 3.7

Number of sites (×106)

T
im

e
(µ

s
)

(a)

0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

CGAL 3.6.1

Sweep alg.

CGAL 3.7

Number of sites (×106)

T
im

e
(µ

s
)

(b)

Figure 14. Average running times on the plane. (a) Insertion algorithms.
(b) Deletion algorithms.

one, respecting the order of a random input permutation.
The average running times on the sphere are depicted in

Fig. 13. It turns out that all algorithms get slower when
the number of sites increases, because the cache capacity is
limited and the hit rate decreases. Besides, there is a striking
difference between the two approaches, given that the CGAL
running times are larger than those of the sweep algorithms
approximately by a factor of 2.8 for insertions, and 10 for
deletions. The justification for these discrepancies is that 3D
Delaunay triangulations are more expensive data structures.
In particular, deletions are strongly penalised.

Fig. 14 plots the average running times on the plane,
which also vary with the number of sites. Concerning
insertions (see Fig. 14a), the CGAL algorithm outperforms
ours (approximately by a factor of 1.3). Similarly, the
three deletion algorithms have comparable performances
(c.f. Fig. 14b). The latest version of CGAL is the fastest of
all, with a twofold improvement from the previous release,
which proves the effectiveness of the specialised functions.
The sweep algorithm performs better than CGAL 3.6.1, but
(approximately 1.4 times) worse than the current release.

VIII. CONCLUSIONS

We have presented two algorithms for updating Voronoi
diagrams of points on a sphere surface or on a plane.

In spite of the deletion running time being not optimal,
both algorithms are efficient and practical to implement.
Furthermore, they handle degenerated cases smoothly, which
is a characteristic of the sweep based algorithms. It is worth
mentioning that, even though many applications benefit from
direct implementations of Voronoi diagrams, only a few
algorithms cope straight with their updates.

The experimental results have shown that our algorithms
are competitive on the plane. On the sphere, their per-
formances were undoubtedly the best, which lead us to
conclude that this domain requires specific algorithms. The
sweep technique, which had already proved to suit the sphere
particularities [7], allowed us to design simple and very
efficient algorithms for updating spherical Voronoi diagrams.
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