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Abstract—We introduce the first sweep line algorithm for
computing spherical Voronoi diagrams, which proves that
Fortune’s method can be extended to points on a sphere
surface. This algorithm is similar to Fortune’s plane sweep
algorithm, sweeping the sphere with a circular line instead of
a straight one.

Like its planar counterpart, the novel linear-space algorithm
has worst-case optimal running time. Furthermore, it copes
very well with degeneracies and is easy to implement. Experi-
mental results show that the performance of our algorithm is
very similar to that of Fortune’s algorithm, both with synthetic
data sets and with real data.

The usual solutions make use of the connection between
convex hulls and spherical Delaunay triangulations. An exper-
imental comparison revealed that our algorithm outperforms
the freely available implementations that compute convex hulls
of point sets in 3D, enabling it to be the preferred choice for
computing Voronoi diagrams on the sphere.
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I. INTRODUCTION

Voronoi diagrams are one of the most important and useful
geometrical data structures that find use in a variety of
fields. Originally defined for point sites in the plane, where
proximity is defined by the Euclidean distance, they were
soon generalized to different site shapes, spaces, and metrics
[1], [2].

One possible generalization, called spherical Voronoi di-
agram, is cast by considering point sites on the surface of a
sphere and measuring the proximity of two points through
the length of the shortest geodesic arc that joins them [3].
It is similar to the planar diagram, except that all Voronoi
regions are delimited by spherical polygons, whose edges are
arcs of great circles. These Voronoi diagrams are of special
interest in domains where data are inherently spherical, such
as Earth sciences and astronomy.

The first algorithm for computing the spherical Voronoi
diagram makes use of the connection between convex hulls
and spherical Delaunay triangulations [4], because a facet of
the convex hull corresponds to a triangle of the Delaunay tri-
angulation and, therefore, to a vertex of the Voronoi diagram.
Several algorithms may be used for that purpose. Brown
[4] suggests the divide and conquer algorithm of Preparata

and Hong [5], [6], which is O(n log n) worst case optimal,
where n is the number of sites. An asymptotically slower
alternative in the worst case is the randomized incremental
algorithm of Clarkson and Shor [7], whose expected running
time is O(n log n). The well-known Quickhull algorithm of
Barber et al. [8] can be seen as an efficient variation of the
previous algorithm.

A different approach is to adapt the randomized incremen-
tal algorithm that computes the planar Delaunay triangula-
tion [9], [10]. The essential operation used in the incremental
step, which checks if a circle defined by three sites contains a
fourth site, is easily translated into spherical geometry [11],
[12]. This algorithm computes the Delaunay triangulation in
O(n log n) expected time.

The two incremental methods are comparable, since the
corresponding incremental steps require a similar effort to
recompute the part invalidated by the newly added site. This
is a consequence of the combinatorial equivalence between
convex hulls and Delaunay triangulations of points on a
sphere surface.

Another important result, also due to Brown [4], relates
the points on the sphere with their stereographic projections
on a plane. It is worth mentioning that, whereas Brown made
use of this property to build Voronoi diagrams in the plane,
Na et al. [13] relied on the inverse relationship and showed
how to compute the spherical Voronoi diagram by combining
two planar Voronoi diagrams of the projected sites. The
latter result works for any compact sites. For point sites,
the running time of the algorithm is O(n log n).

In this work, we study the construction of Voronoi dia-
grams of point sites on the surface of a sphere. We introduce
a novel algorithm based on the sweep line technique, using
an approach similar to that of Fortune for the planar case
[14]. More concretely, the spherical Voronoi diagram will
be computed by sweeping the sphere with a circular line.
This strategy was previously used by Dehne and Klein [15]
to build the Voronoi diagram on a cone surface. However,
we shall adopt the variant of the sweep line algorithm of
Guibas and Stolfi [16], preferring the now common wave
front construct so as to avoid the deformation transform.

In the plane, the sweep line algorithm is consensually



regarded as computationally simple, coping very well with
degeneracies, and easy to implement. As we will see, all
these properties also hold in the spherical version.

The rest of the paper is organized as follows. The spherical
sweep algorithm is specified in Section II. Section II-A starts
examining spherical ellipses, which are needed to define the
wave front, studied in Section II-B. Then, in Section II-C
the algorithm is presented and analyzed, and degenerated
cases are discussed in Section II-D. Although the algorithm
is defined for the spherical coordinate system, Section II-E is
focused on the details of working with Cartesian coordinates.
Section III reports on the experimental results: our algorithm
is compared, in Section III-A, with two sweep line algo-
rithms for computing Voronoi diagrams in the plane and, in
Section III-B, with five freely available implementations for
computing convex hulls in 3D. Lastly, Section IV concludes
with some comments on the research done in the paper.

II. SPHERICAL SWEEP

This section is devoted to the algorithm for computing the
Voronoi diagram on a sphere. It turns out to be an almost
straightforward adaptation of the circular sweep algorithm
in the plane [15].

Due to its convenience, we make use of the standard
terminology in geography, namely, latitude, colatitude, lon-
gitude, north and south poles, parallel of latitude, meridian
of longitude, prime meridian, and antipode of a site.

First of all, an arbitrary sphere position is chosen to
be the center of the sweep. The sweep circle is always
centered at that position and its radius, which is the length
of a geodesic arc, starts at zero and increases as the sweep
process advances. When a site is scanned by the sweep
circle, we are interested in the loci of points equidistant
to the site and the circle, which form a spherical ellipse.
The outer envelope of all these ellipses constitutes the wave
front. It is a closed curve made of arcs of ellipse whose
intersections scan the edges of the Voronoi diagram. In this
case, since the sphere is a closed domain, the wave front
disappears when the sweep process comes to an end.

Although the center of the sweep may be placed at
any location, we choose the north pole because it greatly
simplifies the analysis.1 As a consequence, the sweep circle
scans the parallels of latitude, and its radius is equal to the
colatitude of the parallel. The key fact is that the sweep circle
needs to pass over the sphere twice: first from the north pole
to the south pole, and then backwards to the north.

A. Spherical Ellipses

Since the wave front is made of arcs of ellipse, we will
start by analyzing the properties of an ellipse generated by
the sweep circle and a site, and how it sweeps the sphere.

Let a = (aρ, aθ) be a site on the sphere, where aρ is the
colatitude and aθ is the longitude. Let also o = (0, 0) be the

1Any other location would be equivalent after a proper rotation.
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Figure 1. Spherical ellipse defined by a circle and site a.

center of the sweep, and r ≥ aρ be the radius of the sweep
circle. The loci of points i equidistant to a and to the circle
define a spherical ellipse, with o and a as focal points and r
as major axis (see Fig. 1). This follows from the fact that, for
every i in the conditions stated above, there is a point p on
the circle such that p i = i a and o i+ i p = r. Therefore,
o i + i a = r. The equation of the spherical ellipse, which
gives the colatitude (iρ) of the point of the curve whose
longitude is iθ, is the following (where the arctan function
is normalized for positive output):

E(a, r, iθ) = arctan
(

cos(aρ)− cos(r)
sin(r)− sin(aρ) · cos(aθ − iθ)

)
.

(1)
Equation (1) shows that the ellipse major axis is aligned

with the site meridian. The ellipse begins degenerated as an
arc of great circle delimited by the foci points, and widens as
r increases. When r reaches π, the ellipse degenerates into
a great circle, because the sweep circle is the south pole and
the ellipse is the bisector of two points on the sphere. At
that moment, the ellipse has swept half-sphere.

The next proposition proves that, since half of the sphere
is swept when r varies from aρ to π, the remaining half is
swept for r from π to 2π− aρ. Furthermore, the two sweep
phases are symmetric, in the sense that the ellipse generated
for a sweep circle at π+ δ is the mirror image of the ellipse
generated for the sweep circle at π − δ, taking the great
circle obtained when r = π as the mirror.

Proposition 1: Let a = (aρ, aθ) be a site, o be the north
pole, a∗ and o∗ be the antipodes of a and o, respectively,
and δ ∈ [0, π − aρ]. The spherical ellipse generated by site
a when the sweep circle has radius π+ δ is the ellipse with
foci a∗ and o∗ whose major axis is π − δ.

Proof: Let i be a point of the ellipse generated by a
when the sweep circle has radius π + δ. Then, i a+ i o =
π + δ. Therefore, i a∗ + i o∗ = (π − i a) + (π − i o) =
2π − (π + δ) = π − δ. Hence, i is on the ellipse with foci
a∗ and o∗ whose major axis is π − δ.

To sum up, the ellipse starts degenerated as an arc
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Figure 2. Crossing the south pole. The solid line represents the visible
part of the ellipse. The dashed line is the largest empty circle for a point
on the ellipse. The dashed-dot line is the sweep circle.

connecting the foci, widens until it degenerates into a great
circle, and then narrows until it ends as an arc linking the
foci antipodes. Moreover, the ellipse effectively sweeps all
the sphere, when the circle radius varies from aρ to 2π−aρ.

The sweep process has an interesting geometric interpre-
tation, regarding maximum empty circles (see Fig. 2). The
largest empty circle centered at a point i of the ellipse is
tangent to site a and to a point p of the sweep circle with
radius r. If r < π, the largest empty circle is tangent to the
upper part of the sweep circle (on the side of the smallest
colatitudes) and does not contain the south pole. For r > π,
the largest empty circle is tangent to the lower part of the
sweep circle (on the side of the greatest colatitudes) and
contains the south pole. When r = π, the sweep circle
coincides with the south pole, to which the largest empty
circle is tangent.

B. Wave Front

The wave front is the lower envelope of the ellipses
generated by the sites already scanned by the sweep circle.
It begins its existence when the sweep circle scans the
northernmost site, starting degenerated as an arc of great
circle. The sweep process ends when the sweep circle
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Figure 3. Intersection of two spherical ellipses.

rescans the first site after the south pole, that is, when it
scans the southernmost site a second time. At that moment,
the wave front coincides with the ellipse generated by that
site, which is again an arc of great circle.

Our next goal is to understand how spherical ellipses
intersect. To start with, we define an order relation on sites
by:

a < a′ ⇔ aρ < a′ρ ∨ (aρ = a′ρ ∧ aθ < a′θ).

Let a = (aρ, aθ) and b = (bρ, bθ) be two distinct sites such
that b < a, r ∈ [aρ, 2π − aρ] be the radius of the sweep
circle, and o be the north pole (as illustrated in Fig. 3). The
ellipses generated by a and b intersect at exactly two points,
named 〈a,b〉 and 〈b,a〉, which, in this case, are on opposite
sides of the great circle defined by the aθ meridian (because
b is not farther from o than a). Therefore, 〈a,b〉θ ∈ a+ and
〈b,a〉θ ∈ a−, where a+ and a− are the hemispheres defined
by the meridians of longitude ]aθ, aθ + π[ and ]aθ − π, aθ[,
respectively.

The two arc intersections start out coincident, when
r = aρ. Then, they scan the sites bisector following
in opposite directions: 〈a,b〉θ monotonically increases in
θ whereas 〈b,a〉θ monotonically decreases in θ. When r
reaches 2π − aρ, the two intersections coincide again,
completing the scan of the bisector. Notice that, if bρ = aρ,
the sites bisector is a meridian, so 〈a,b〉θ and 〈b,a〉θ are
constant along the sweep. However, to avoid special cases, it
may be assumed that 〈a,b〉θ (respectively, 〈b,a〉θ) effectively
sweeps a+ (respectively, a−).

Similar results are obtained for a < b.

C. The Algorithm

The spherical sweep algorithm does not differ much from
the circular sweep algorithm in the plane [15]. A way to cope
with the closed nature of the wave front, which is ordered
in θ, is to cut it by the prime meridian and to represent
the divided arc twice, in the beginning and in the end of
the sequence of arcs and arc intersections. Whenever one of
the arc intersections traced by the duplicated arc crosses the



prime meridian, a roll-event takes place. Events are stored
in an adaptable priority queue [17], ordered by colatitude
(which may vary from 0 to 2π).

The algorithm starts by inserting all sites into the priority
queue. Then, while the priority queue is not empty, an event
is removed and processed. When the queue is exhausted, a
last step must be performed. Since the event processing is
the usual one, in what concerns additions and removals of
arcs and arc intersections, we will restrict ourselves to the
scheduling of roll- and circle-events.

A roll-event is associated with the first arc 〈a〉 of the
wave front if the first arc intersection 〈a,b〉 crosses the
prime meridian. This happens only if b > a and bθ < π.
Similarly, a roll-event is associated with the last arc 〈d〉 of
the wave front when the penultimate arc 〈c〉 is such that
c > d and cθ > π. The priority of a roll-event is determined
by computing the circle centered on the prime meridian that
circumscribes the two corresponding sites.

Basically, a circle-event should be scheduled if the paths
of the adjacent arc intersections intersect before any of them
crosses the prime meridian. Let 〈b〉 be an arc, and 〈a,b〉
and 〈b,c〉 be the two adjacent intersections. Let also 〈a,b,c〉
be the center of the spherical circle that circumscribes, in
clockwise order, sites a, b, and c. If a < b and b > c, the
two arc intersections 〈a,b〉 and 〈b,c〉 run apart, so arc 〈b〉
does not disappear. Any other case may lead to a circle-event
associated with 〈b〉, which will be scheduled if one of the
following conditions is met.

• a > b and b < c
In this case, the two intersections run against each other
and 〈a,b,c〉θ ∈ [aθ, cθ].

• a > b, b > c, and 〈a,b,c〉θ ∈ a+ ∩ b+∩ ]aθ, 2π[
Both arc intersections (which scan points of increasing
longitude) must meet within their ranges and before any
of them crosses the prime meridian.

• a < b, b < c, and 〈a,b,c〉θ ∈ b− ∩ c− ∩ [0, cθ[
This is the opposite of the previous case.

The priority of the circle-event is the greater colatitude of a
point of the circumference defined by the three sites.

There is an additional global constraint for a circle- or a
roll-event to be scheduled: its priority cannot exceed 2π−sρ,
where s is the southernmost site, as the sweep process ends
when the sweep radius reaches that value.

It is important to mention that the processing of circle-
events always generates vertices of degree three. Actually,
vertices of greater degree appear in the resulting diagram as
more than one vertex, overlapped and connected by null
length edges. So, an immediate consequence of Euler’s
formula is that a Voronoi diagram of n sites built by our
algorithm has 2n − 4 vertices and 3n − 6 edges (for any
n ≥ 3).

Proposition 2: For n ≥ 2 sites, the wave front ends with
two arcs (and two intersections).

〈b
, c
〉

〈c, a〉

〈a, b〉

〈b, c〉

〈c, b〉

Figure 4. Closing the wave front, before and after the last circle-event.

Proof: The first two site-events give rise to exactly two
arcs and two intersections in the wave front (seen as a closed
line). If n = 2, the wave front does not change anymore.
For n > 2, each of the subsequent site-event adds two arcs
to the wave front, while each circle-event subtracts one arc.
Therefore, the arcs added by n− 2 site-events are offset by
the arcs subtracted by 2n− 4 circle-events.

The two remaining intersections of the wave front must
scan the same edge of the Voronoi diagram (see Fig. 4).
Otherwise, at least one vertex (and a circle-event) would be
missing. This edge, which is being scanned twice, has also
been added twice to the diagram. Therefore, the diagram is
completed by discarding one of the edges and appropriately
connecting the other one.

Now, let us define the ordering relation between an
arbitrary longitude θ′ and an arc intersection 〈a,b〉, used in
the binary search tree that implements the wave front. When
a > b, 〈a,b〉θ ∈ a+, and three distinct cases (illustrated in
Fig. 5) must be analyzed.
• If the prime meridian /∈ a+, the sphere may be divided

into three sectors: [0, aθ], a+, and [aθ + π, 2π[. Notice
that only a+ poses some difficulties, because, if θ′

belongs to the first or to the third sectors, it is lower
or greater than 〈a,b〉θ, respectively. The comparison in
a+ makes use of (1):

θ′ ≤ 〈a,b〉θ ⇔ E(a, r, θ′) ≥ E(b, r, θ′). (2)
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Figure 5. Comparing a longitude with 〈a,b〉, when a > b.

• When a+ contains the prime meridian, two situations
are considered.

– If 〈a,b〉θ ∈ [aθ, 2π[, either θ′ ∈ [0, aθ], which
implies θ′ ≤ 〈a,b〉θ, or θ′ ∈ ]aθ, 2π[. The latter
case is solved by (2).

– When 〈a,b〉θ ∈ [0, aθ − π], if θ′ ∈ [aθ − π, 2π[,
then θ′ ≥ 〈a,b〉θ; otherwise, θ′ ∈ [0, aθ − π[ and
(2) is used.

The cases in which a < b can be treated in a similar way.
Proposition 3: The algorithm computes the spherical

Voronoi diagram with n sites in O(n log n) time using Θ(n)
space.

Proof: First of all, the size of both data structures is
Θ(n). Therefore, each primitive operation on the binary
search tree and on the priority queue takes O(log n) steps, if
they are implemented, respectively, with a red-black tree [18]
and with a binary heap and an array.2 Besides, every event
requires a constant number of those primitive operations to
be processed, and the total number of processed events is
Θ(n).

A consequence of Brown’s result [4] that links Voronoi
diagrams of sites on a sphere with Voronoi diagrams of their
stereographic projections on a plane is that any algorithm
for computing the spherical Voronoi diagram implicitly
computes two planar Voronoi diagrams: a nearest point
diagram and a furthest point diagram. It is easy to see
that the spherical sweep algorithm computes them in turn.
Consider the stereographic projection center c at the south
pole. The nearest diagram is computed when the sweep
circle radius varies from 0 to π, and the maximum empty
circle of every vertex does not include c. Then, the furthest
diagram is computed when the sweep circle radius varies
from π to 2π, and the maximum empty circle of any vertex
includes c.

2The second array associates every event in the priority queue with its
position in the binary heap.

D. Site at the South Pole
The algorithm described above is well behaved for sites

placed anywhere on the sphere, except at the south pole.
Let s be a site at the south pole. To start with, the valid
range of the sweep circle radius is the degenerated interval
{π}. Moreover, the initial ellipse, which is always an arc
connecting the foci points, is indeterminate, because any
meridian fulfills the requirements.

In order to see that this problem does not compromise
the algorithm, recall that, when the sweep circle reaches the
south pole, every arc 〈a〉 of the wave front is an arc of
great circle, which bisects the corresponding site a and s.
As a matter of fact, the Voronoi polygon of site s coincides
with the wave front when the sweep circle reaches π. The
justification comes from Proposition 4.

Proposition 4: When the sweep circle radius is π, any
two distinct arcs of the wave front (seen as a closed line)
are generated by distinct sites.

Proof: The proof is straightforward when the wave
front has only one or two arcs. So, let us assume that
〈a〉, 〈b〉, and 〈c〉 are three consecutive arcs of the wave
front, generated by sites a, b and c, respectively, separated
by intersections 〈a,b〉 and 〈b,c〉. Our goal is to show
that b cannot generate any arc but 〈b〉. Since 〈a,b〉 is the
intersection of two great circles (and the wave front is the
lower envelope of arcs), site b cannot generate any arc
in the interval ]〈a,b〉θ − π, 〈a,b〉θ[, where the great circle
generated by 〈a〉 has a greater colatitude than the great
circle generated by 〈b〉. Similarly, b cannot generate any
arc in the interval ]〈b,c〉θ, 〈b,c〉θ+π[, where the great circle
generated by 〈c〉 has a greater colatitude than the great circle
generated by 〈b〉. As the union of both intervals corresponds
to [0, 2π]\]〈a,b〉θ, 〈b,c〉θ[, 〈b〉 is the only arc generated by
b.

In practice, events due to a site at the south pole do not
need a special treatment. When the site-event is handled,
an arc of the wave front is arbitrary chosen to be the one
directly above the south pole and the corresponding new arc



starts. This new arc gives rise to a cascade of circle-events,
all scheduled for colatitude π, whose processing computes
the vertices of the south pole Voronoi polygon. It is irrelevant
which arc is chosen to be directly above the south pole. So,
the single modification from the general case is to replace
the computation of 0

0 with any value in (1).
We conclude that sites can be positioned anywhere on the

sphere, even though the sweep process ends rather abruptly
if a site is placed at the south pole.

E. Spherical and Cartesian Coordinate Systems

The actual computation of event priorities and the defini-
tion of the ordering relation used in the wave front depend
on the underlying system of coordinates. We will now focus
on the details for the two common alternatives.

So far, we have adopted the spherical coordinate system,
since it is the natural choice when dealing with locations on
a sphere. In this setting, a site a is defined by its colatitude aρ
and its longitude aθ, thus the priority of the corresponding
site-event is

P ssite(a) = aρ. (3)

The priority of a circle-event requires the computation of
the circle circumscribed by three sites, a, b and c, which is
defined by the intersection of the plane containing the sites
and the unit sphere. If ~p = (px, py, pz) denotes (the vector
with) the Cartesian coordinates of a point p on the sphere,
the priority of the circle-event is given by:

P scircle(a, b, c) = arccos(uz) + arccos(~u · ~a), (4)

where {
~v = (~a−~b)× (~c−~b),
~u = ~v

‖~v‖ .

The circle-event should be scheduled if, and only if, the cor-
responding intersections 〈a,b〉 and 〈b,c〉 cross at the circle
center u. Because this verification is made by comparing
uθ with some values in the set {0, 2π, aθ, aθ ± π, bθ, bθ ±
π, cθ, cθ ± π}, rounding errors may prevent true circle-
events to be scheduled. This difficulty can be overcome
by scheduling all circle-events, except those whose arc
intersections run apart. Of course this strategy may schedule
some extra circle-events, which will be later identified as
false events, but none of the true events is left out.

The priority of a roll-event caused by an arc intersection
〈a,b〉 is computed in a similar way:

P sroll(a, b) = arccos(uz) + arccos(~u · ~a), (5)

where {
~v = (az − bz, 0, bx − ax),
~u = ~v

‖~v‖ .

In this case, the decision of scheduling the event depends
solely on the comparison of aθ (or bθ) with π.

The ordering relation between a longitude θ′ and an arc
intersection 〈a,b〉 has already been completely detailed in
Section II-C.

A straightforward implementation of the previous defini-
tions has two major drawbacks: it relies on comparisons with
inexact values (e.g. π) and requires the use of trigonometric
functions. That is why Cartesian coordinates are preferable.

Let sites be specified in (or converted to) Cartesian
coordinates. A priority associated with the sweep circle at
radius ρ is:

P c(ρ) = 2 sgn(t) t2, where t = cos(ρ/2). (6)

Now, priorities vary from +2 to −2, are positive when the
sweep circle moves southwards, zero at the south pole, and
negative while the sweep circle goes toward the north. Ap-
plying (6) to the three types of events gives, after simplifying
expressions, the following results.

The priority of a site-event is simply:

P csite(a) = 1 + az. (7)

The priority of a circle-event is given by:

P ccircle(a, b, c) =
δ + r vz −

√
(δ − v2

z)(δ − r2)
δ

, (8)

where 
~v = (~a−~b)× (~c−~b),
r = ~v · ~a,
δ = ‖~v‖2.

The priority of a roll-event is:

P croll(a, b) = s×
δ + r z −

√
(δ − z2)(δ − r2)
δ

, (9)

where 
r = sgn(bz − az) (axbz − azbx),
z = sgn(bz − az) (ax − bx),
s = sgn(r + z),
δ = (ax − bx)2 + (az − bz)2.

The ordering relation used in the wavefront also becomes
simpler. The comparison of a direction, defined by a site p,
with an intersection 〈a,b〉 verifies:

pθ < 〈a,b〉θ ⇔ α |bz − pz| < β |az − pz|, (10)

where {
α = px (px − ax) + py (py − ay),
β = px (px − bx) + py (py − by).

Therefore, the use of Cartesian coordinates together with
a redefinition of priority enables to implement the spherical
sweep algorithm employing only arithmetic and square root
operations.



III. EXPERIMENTAL RESULTS

In this section, we present some experimental results that
show how the spherical sweep algorithm behaves and how it
compares with other algorithms. In Section III-A, the study
is restricted to sweep algorithms and, in Section III-B, it
is centered on algorithms for computing spherical Voronoi
diagrams.

A. Planar and Spherical Sweep Algorithms

We have programmed four versions of sweep algorithms.
The linear [14] and the circular [15] sweep algorithms
compute Voronoi diagrams in the plane. The first one scans
the plane with a straight line, whereas the second uses a
circular line. In both cases, points are defined in Cartesian
coordinates. Besides, there are two implementations of the
spherical sweep algorithm: one called spherical s, for sites
in spherical coordinates, which makes use of trigonometric
functions; and the other named spherical c, where points are
in Cartesian coordinates.

Whenever possible, source code was shared among the
implementations so that running times could be compa-
rable. In particular, the relevant data structures are the
same across implementations. The binary search tree has
been implemented with a red-black tree, and the adaptable
priority queue with a binary heap and an array. The main
implementation differences rely on computing priorities and
keeping the wave front ordered.

All algorithms have been coded in the C language and
compiled with the GNU GCC C compiler (version 4.3.2)
with optimizations. Programs have been executed on an Intel
Xeon E5160 processor, running at 3.00 GHz, with memory
running at 1333 MHz.

With respect to data sets, sites on the plane are at random
positions, distributed uniformly on the [0, 1]× [0, 1] square.
Circular sweeps have been centered at the origin. On the
sphere, two types of data sets have been generated. In
the first one, sites are also at random positions, uniformly
distributed, while, in the second, they belong to the Tycho-2
star catalog [19]. This catalog has over 2.5×106 stars, with
a visible non-uniform distribution on the celestial sphere.
Each Tycho-2 data set has been computed by taking the
first stars from a random permutation of all catalog. The
star catalog has been chosen in order to test the spherical
sweep algorithm with real data.

For each one of those universes, five independent data sets
have been generated, with sizes 0.1× 106, 0.2× 106, 0.3×
106, . . . , 2.5×106. All results presented in the paper are the
average of the five values obtained from the executions with
the sets of the same nature and size.

To begin with, Fig. 6 plots the average number of false
events per site. With respect to this metric, values are equal
in both implementations of the spherical sweep. Needless to
say, the total number of false events must depend linearly
on the number n of sites, because there are Θ(n) events
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Figure 6. Average number of false events per site.

generated and Θ(n) events processed. The results show that,
when the algorithms are executed with random data sets, the
number of false events per site converges to a very similar
constant as n increases. Therefore, the costs due to false
events are equivalent in all algorithms.

Fig. 7 depicts running times. All curves exhibit a supra
linear behavior, as expected, and, what is more meaningful,
they are related with each other by almost “constant” factors.
The spherical c, the circular, and the spherical s programs
differ from the linear one approximately by a factor of
1.24, 1.33, and 3.18, respectively. The observed patterns
are explicable by the costs of computing priorities and
keeping the wave front ordered. This is particularly true
when comparing the spherical implementations, whose only
differences are those stated in Section II-E. Remark that the
number of events cannot justify the distinct running times
given that, in all algorithms, the numbers of site-events are
equal, the numbers of circle-events are approximately equal,
the numbers of roll-events (which are very close to

√
n) are
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insignificant, and the numbers of false events are identical.
It also turns out that the running times with Tycho-2 data

sets are almost coincident with those with random data sets.
So, at least in this experiment, the non-uniformity has not
produced sensible variations.

In conclusion, these experimental results show that the
spherical sweep algorithm is not only practical to implement,
but also as efficient as Fortune’s algorithm.

B. Spherical and 3D Algorithms

Our next goal is to compare the spherical sweep algorithm
with five freely available alternatives:
• Hull [20] and CGAL hull [21], which implement the

incremental algorithm of Clarkson [22] for computing
the convex hull of a set of points in any dimension;

• Qhull [23] and CGAL quickhull [21], which implement
the Quickhull algorithm of Barber et al. [8]; and

• CGAL triang. [21], which computes a basic triangula-
tion [24] of a set of points whose dimension is at most
three. (Remark that any 3D triangulation of a point set
on a sphere also provides its convex hull.)

It is important to mention that [25] presents an adaptation,
to the spherical domain, of the incremental algorithm for
computing the 2D Delaunay triangulation. It is reported
to be faster than that for computing the 3D triangulation.
Nevertheless, it is not yet available in the CGAL library.
Moreover, the LEDA library [26] has been left out because
the free edition does not provide the computation of 3D
convex hulls.

All freely available implementations have been compiled
and executed as described in Section III-A. Concerning the
CGAL library, we followed the conventional choice of using
the exact computational kernel and the floating-point data
representation. Moreover, we have used the same data sets
with points on a sphere.

Since there are significant differences in the running times
of the tested implementations, we present them separately.
Fig. 8 depicts the running times of the three slower al-
gorithms with random data sets, whereas Fig. 9 plots the
corresponding results for the four fastest ones. Hull occurs in
both so as to have an easy reference mark. Besides, Fig. 10
presents the running times of the fastest algorithms with
Tycho-2 data sets.

CGAL quickhull, CGAL hull, and Hull belong to the
slowest group. While the last two are not a surprise, we
sought an explanation for the performance of CGAL quick-
hull, which might be related to the numerical filters of
the exact computational kernel that are used to assure that
determinant signs are correct. Unfortunately, the adoption
of an inexact kernel is not a solution, because the program
does not terminate without filtered computations (even with
as few as five points).

When we restrict ourselves to the second group, Hull is
the slowest algorithm. But is uses precise integer arithmetic,
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evaluates the sign of determinants exactly [27] and, unlike
the alternatives, has no improvements to speed up point
locations.

Qhull comes in second place. It benefits from the use
of floating-point arithmetic and from the efficiency of the
Quickhull strategy (where outside sets obviate the need to
perform point locations). Nevertheless, it might be affected
by all sites being part of the resulting convex hull, since a
lot of bookkeeping takes place to maintain the outside sets
before a new site is added. Remark that, as our purpose was
to obtain a Voronoi diagram on a sphere, we turned on the
flag that enforces the output to be a triangulation. That is,
degenerated facets, defined by more than three sites, have
also been triangulated. Qhull performance is similar to that
of our algorithm with spherical coordinates.

The running times of CGAL triang. are only slightly
greater than those of the spherical sweep algorithm with
Cartesian coordinates. As far as we understood, the good
performance of this implementation is mainly due to sites
being spatially sorted along a Hilbert curve [28]. Conse-
quently, each new site is close to the last one added, which
minimizes, on average, the cost of the walk performed in
the current triangulation to find a new cell that contains a
site.

Comparing the results obtained with random data and
with stars from the Tycho-2 catalog, it turns out that
the corresponding curves are almost equal, except those
concerning Qhull. The reason is that Qhull running time
increases considerably when sites are found very close to
the convex hull boundary (and thick facets are built).

In conclusion, these experimental results show that the
spherical sweep algorithm is the preferred choice for com-
puting Voronoi diagrams on a sphere.

IV. CONCLUSIONS

We have presented a novel algorithm for computing the
Voronoi diagram of point sites on a sphere surface, which is
an adaption of the sweep technique to the spherical domain.
Actually, our algorithm does not mimic closely the linear
plane sweeps of Fortune’s algorithms [14], but it imitates
the round sweep algorithm of Dehne and Klein [15] instead,
which proved to be adjustable to the round nature of the
sphere.

Our algorithm computes the spherical Voronoi diagram in
O(n log n) time and Θ(n) space (where n is the number
of sites), which is worst-case optimal. Furthermore, the
experimental results attested that it is as practical, efficient,
and easy to implement as Fortune’s algorithm, enabling it
to be the preferred choice for computing Voronoi diagrams
on a sphere.

An important achievement of this work is the neat adap-
tation of the circular planar sweep technique to the sphere.
This shows that other planar sweep algorithms may be

adapted to the spherical domain, as long as their sweep
strategy can rely on a circle.
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