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Abstract

We introduce a novel algorithm for solving the nearest
neighbour problem when the query points are known
in advance, which is based on Fortune’s plane sweep
algorithm. The crucial idea is to use the wavefront for
solving the nearest neighbour queries as the Voronoi
diagram is being computed, instead of storing it in an
auxiliary data structure, as the algorithm presented by
Lee and Yang [9] does, and then querying that data
structure.

Although our algorithm is not optimal in terms of its
worst-case behaviour, it runs in O(m log m) expected
time, where m is the total number of points (sites and
query points). Experimental results show that it out-
performs the algorithm of Lee and Yang, provided the
number of query points does not exceed four times the
number of sites.

1 Introduction

The family of point set pattern matching problems has
been widely studied in recent years [1, 3, 7, 8], due
to the variety of fields where these problems are ap-
plied. As in [11], we tackle the problem of star mapping,
where points belong to the R

2 Euclidean space, having
adopted the alignment method introduced by Goodrich
et al. [8]. Basically, the matching test consists in solv-
ing a nearest neighbour query for each point of the pat-
tern in the appropriate subset of the background, for
which the Voronoi diagram is computed.

The novel idea is to solve all nearest neighbour queries
at the same time that the Voronoi diagram is com-
puted, instead of storing it in an auxiliary static data
structure, such as a trapezoidal map, and then query-
ing that data structure [10]. This may be done because
all query points (the pattern) are known in advance.

Although the algorithm introduced by Lee and Yang

[9] makes the same requirement, as it works on a pla-
nar subdivision, it performs two steps: in the first one,
the planar subdivision is built and, in the second, the
nearest neighbour points are identified.

Both approaches rely on the plane sweep technique
(due to Fortune [6]). However, the algorithm of Lee
and Yang solves the batched point location problem in
a planar subdivision, whereas ours solves the batched
point location problem in a set of points. It is worth
mentioning that, in [5], where Edelsbrunner and Over-
mars discuss some techniques for coping with the more
general problem of batched searching, the authors ar-
gue that the plane sweep technique is an appropriate
choice for 2-dimensional batched search problems.

The rest of the paper is organized as follows. Section 2
describes our approach, Section 3 studies its time and
space complexity, Section 4 presents some experimen-
tal results that compare the performance of both al-
gorithms, and Section 5 includes some comments on
the research done in the paper. Detailed proofs can be
found in [4].

2 The Algorithm

Our approach relies on the plane sweep technique (due
to Fortune [6]), which computes a Voronoi diagram
with n point sites in O(n log n) time, in the worst case.
Intuitively, a horizontal line, denoted by sweep line,
sweeps the plane from the top to the bottom. There is
another line, called the wavefront , which is made up of
parabolic arcs that are defined by the sweep line and
the point sites on or above it.

The key fact is that, at any time, the points that lie on
a parabolic arc of the wavefront, generated by a site p,
are necessarily at least as close to p as to any other site.
Moreover, during the sweep process, the parabolic arcs
generated by p scan all points of the plane closer to p

than to any other site. Therefore, for every query point
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Figure 1: Query-event.

a

b

c
d

V

q
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Figure 4: Site-event.

q, it is enough to determine which parabolic arc 〈a〉 of
the wavefront contains q. The site that generated 〈a〉
is the nearest neighbour of q. The wavefront scans the
query point once, because the sweep is y-monotonic,
and the point is contained in only one of its elements,
because the wavefront is x-monotonic.

The wavefront can be seen as a sequence of alternate
parabolic arcs and intersections of parabolic arcs. Let
us consider the regions bounded by an arc (on the
top), the sweep line (on the bottom), and the verti-
cal extensions of the two intersections adjacent to the
arc (Figs. 1–5). Along the sweep, the regions’ shape
changes: the arc moves downwards; and each inter-
section traces out an edge of the Voronoi diagram,
moving on either x-monotonously to the left, or x-
monotonously to the right, or vertically (i.e., keeping
the x-coordinate constant).

Let us call the event where a new query point is reached
by the sweep line a query-event (Fig. 1). When a query-
event takes place, we do not know which parabolic arc
will reach the point, since the nearest site can be lo-
cated below it, so the arc may not even exist. However,
it is easy to find the region that contains it, by perform-
ing a search similar to the one made for a site-event.
When the sweep proceeds, the algorithm keeps track-
ing the area where the query point lies, possibly moving
the point into another region, until it is reached by an
arc.

The procedure to handle a query-event associated with
a query point q is the following.

1. Determine the region that contains q.

2. Determine which of the following three situations
occurs first: the arc reaches q, which is an arc-

event ; the left vertical line reaches q, which is an
intersection-event ; or the right vertical line reaches
q, which is also an intersection-event. Associate q

with the element (the arc or the intersection) of
the event.

3. Insert the event in the event priority queue.

Remark that, besides associating the query point with
an element of the wavefront, this procedure generates

an event to be handled later.

To handle an intersection-event (Fig. 2) is to change the
element of the wavefront which the query point is as-
sociated with. The region that now contains the point
is either the one on the left or the one on the right,
depending on the x-direction of the intersection (which
is assured to be either from left to right or from right
to left). The movement direction of an intersection ad-
jacent to the sites 〈p, p′〉 is (where px ≤ p′x):

• from left to right if py < p′y;

• from right to left if py > p′y; and

• downwards if py = p′y.

Then, the algorithm must determine, in the new region,
which event will first take place, and the choice is be-
tween the new arc and the vertical line on the opposite
side of the intersection-event.

This procedure is repeated until an arc-event is handled
(Fig. 3). At that moment, the point has been reached
by a parabolic arc, thus the nearest site has been found.

Let us now explain how the sweep line position is com-
puted at these new types of events.

For arc-events, it follows from the definition of parabola
that an arc generated by a site p contains a point q when
the distance between q and the sweep line, qy − Vy, is
equal to the distance between q and p: distance(q, p) =
qy − Vy .

For an intersection-event adjacent to two sites p1 and
p2, the algorithm computes the bisector of p1 and p2,
which defines the positions of the intersection along the
sweep. Let q = (qx, qy) be the query point coordinates,
and b = (qx, by) be the point of the bisector with the
same x-coordinate. When the intersection reaches b,
the vertical line contains q. So, the event should take
place when the distance between b and the sweep line,
by − Vy, is equal to the distance between b and p1 (or
p2): distance(b, p1) = by − Vy.

Notice that, so far, a query point is always associated
with the arc or an intersection of the region containing
it, depending on which reaches it first. As we shall
see, this condition (called the invariant on the query



points) always holds. In addition, for a query point q

to be moved from one region r1 to another region r2,
the site that gives rise to the arc of r2 is closer to q

than the site associated with r1.

Like Fortune’s algorithm [2], our algorithm makes use
of two data structures: a balanced binary tree, to store
the arcs and the intersections of the wavefront; and a
priority queue of events. As sites and query points are
known in advance, all site-events and query-events are
generated and inserted in the queue, in the beginning.

For the sake of efficiency, arc-events and intersection-
events store a pointer to the corresponding tree node
(arc or intersection). Furthermore, every node of the
binary tree (internal or leaf) stores a linked list of query
points, and every element of the list has a reference to
the corresponding event in the priority queue.

A site-event creates a new region in the middle of some
region. Thus, the query points associated with that re-
gion have to be distributed among the three new regions
(Fig. 4). Let then [〈l, a〉, a, 〈a, r〉] be the existing region,
bounded by the left intersection 〈l, a〉, the arc 〈a〉, and
the right intersection 〈a, r〉. The introduction of a new
arc 〈b〉 gives rise to three regions: [〈l, a′〉, a′, 〈a′, b〉],
[〈a′, b〉, b, 〈b, a′′〉], and [〈b, a′′〉, a′′, 〈a′′, r〉]. The algo-
rithm performs the following steps.

1. The events of arc 〈a〉 are distributed among the
arcs 〈a′〉, 〈b〉, and 〈a′′〉, based on the x-coordinate
of the query points.

2. For every arc-event of 〈a′〉 (resp., 〈a′′〉), the al-
gorithm checks whether the corresponding query
point is first reached by the intersection 〈a′, b〉
(resp., 〈b, a′′〉) and, if that is the case, the arc-event
becomes an intersection-event associated with that
intersection.

3. If the intersection 〈l, a′〉 is moving on to the right
(resp., if the intersection 〈a′′, r〉 is moving on to
the left), its events are distributed among itself,
〈a′, b〉, 〈b〉, and 〈b, a′′〉.

Needless to say, the priority queue is updated whenever
there is a change in the lists of query points. Besides,
the invariant on the query points is kept.

Remark that, if a site p occurs vertically below a query
point q, q gives rise to an event associated with the
new arc 〈b〉, because 〈b〉 is a vertical line segment that
contains q. The priority of that arc-event, which cor-
responds to the current position of the wavefront, is
highest than the priority of any event in the queue.
Consequently, the event will be handled next, ending
with the conclusion that p is the site nearest to q.

A circle-event (Fig. 5) corresponds to the joining of two
intersections, where an arc drops out, the two edges
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Figure 5: Circle-event.

scanned by the intersections meet (defining a vertex of
the Voronoi diagram), and a new edge starts.

By construction, no query point can be associated with
the arc 〈a〉 when it disappears, or with the intersec-
tions 〈l, a〉 and 〈a, r〉 unless they have been moving on
the same direction. Actually, if 〈l, a〉 and 〈a, r〉 have
been moving on opposite directions, their lists of query
points are empty because they have scanned all query
points that could be associated with them.

In any case, let [〈l, a〉, a, 〈a, r〉] be the region that dis-
appears, and [〈l′, l〉, l, 〈l, a〉] and [〈a, r〉, r, 〈r, r′〉] be its
adjacent regions. The event distribution is as follows.

1. The intersection-events of 〈l, a〉 and 〈a, r〉, if any,
become associated with the new intersection 〈l, r〉.

2. If 〈l, r〉 moves to the right, determine, for every
event of 〈r〉 and for every event of 〈r, r′〉, whether it
is first reached by 〈l, r〉 and, in that case, associate
it with the intersection 〈l, r〉.

3. If 〈l, r〉 moves to the left, determine, for every event
of 〈l〉 and for every event of 〈l′, l〉, whether it is first
reached by 〈l, r〉 and, in that case, associate it with
the intersection 〈l, r〉.

Once again, this assures (c.f. [4]) that the invariant con-
dition on the query points remains true for the two new
regions [〈l′, l〉, l, 〈l, r〉] and [〈l, r〉, r, 〈r, r′〉].

There are two special cases that deserve attention. To
overcome the problem caused by query points above the
first site, which would be reached by the sweep line be-
fore the first region had been created, the sweep process
starts only with the first site-event. At that moment,
the first arc is created, and all query points located
above the site are associated with it. The second case
is when a query point q occurs on the vertical extension
of an intersection. If the intersection moves on to the
left or to the right, the corresponding intersection-event
will be handled without delay, and q will become asso-
ciated with another event. But if the intersection scans
a vertical edge of the Voronoi diagram, q cannot remain
associated with it, because the treatment of that event
would not cause any change in the system. Therefore,
in this case, q is associated with one of the joining arcs.



3 Time and Space Complexity

The next goal is to analyse the cost of our algorithm
with n sites and k query points.

Apart from a list of query points in each node, the
binary tree is the same as that of Fortune’s algorithm.
Hence, it has O(n) nodes and each search, insertion
or removal operation takes O(log n) steps. As for the
priority queue, since it stores exactly the same site-
events and circle-events, plus at most one event per
query point, its length is O(n+k) and each operation on
it costs O(log(n + k)) time. In what concerns memory
requirements, both data structures use O(n+k) space.

Leaving out, for now, the operations respecting to the
query points, the processing of site-events and circle-
events remains unchanged. So, there are Θ(n) of these
events, which take O(n log(n + k)) time to process, be-
cause of the queue length. Concerning query points, it
is easy to verify that:

• the time spent in creating, removing, or handling
any query-event, intersection-event, or arc-event is
within O(log(n + k)); and

• when site-events and circle-events are processed,
the time required to visit each element of a list of
query points and to decide whether to reschedule
or not the corresponding event is constant.

So, our next step is to estimate how many events on
query points are generated and how many visits to
query points are performed.

Let then q be an arbitrary query point, and e be an
intersection-event or an arc-event associated with q.
We say that e links a site p with q (or, alternatively,
that a site p is linked with q through e), if p is the site
of the region that contains q when e is generated. Al-
though we might consider that a query point belongs
to two regions when an intersection-event is handled,
we shall assume, according to the intuitions spelled out
above, that it is already in the new one (instead of in
the region that contains it at the time the intersection-
event is generated).

This notion of link is extended to visits: a visit v to q

links a site p with q (or p is linked with q through v), if
q belongs to a region bounded by an arc generated by
p by the time the visit v is performed.

The sequence of events and visits related to q can be
split into sub-sequences according to the linked site.
More concretely, it can be seen as having the following
structure:

e′ e1 x11 · · · x1l1
︸ ︷︷ ︸

p1

· · · eu xu1 · · · xulu
︸ ︷︷ ︸

pu

where e′ is the query-event, which does not link any
site with q, ei represents the first event that links site
pi with q, and xij stands for an event or a visit through
which pi is linked with q. In particular, e1 is the
intersection-event or arc-event generated by the pro-
cedure for handling query-events, whereas xulu is the
only arc-event that takes place.

Let us first concentrate on the events ei. Remark
that, for the site linked with q to change, either an
intersection-event is handled, or a site occurs vertically
below q. In both cases, q is closer to the new site than
to the old one, which allows us to conclude that the
sites p1, p2, . . . , pu linked with q are all distinct.

Moreover, it can be proved [4] that, for every site pi

linked with q, there is a circle whose boundary con-
tains pi and q, and that does not contain any site in its
interior. Therefore, the total number of sites that may
be linked with q (i.e., the value of u) cannot exceed the
number of neighbours of q in the Voronoi diagram of
P ∪ {q}, where P stands for the set of sites. This im-
plies, together with the properties on Voronoi polygons
[2], that, even though u can be as large as n, in some
rare cases, its expected value is O(1).

In what concerns the events xij (for some fixed i), no-
tice that they cannot be generated when a query-event,
intersection-event or arc-event is handled. But, for ev-
ery site-event that affects a region associated with pi, q

is visited once and at most one new event is generated
(as, in practice, the first two steps are performed simul-
taneously). Besides, a new edge of the Voronoi polygon
of pi is created. The same happens with circle-events.
That is, whenever a visit (and the possible correspond-
ing event) links pi with q in the context of a circle-
event, a new edge of the Voronoi polygon of pi starts
to be traced out. This means that the number of such
visits (and events) cannot exceed the number of edges
of the Voronoi polygon of pi. Once more, although it
is well-known that a single Voronoi polygon may have
n−1 edges, the average number of edges of the Voronoi
polygons is less than six [2].

We conclude that the time spent due to the query
points is Θ(nk log(n + k)), in the worst-case, and
O(k log(n + k)), in the average-case. Hence, the algo-
rithm uses O(n + k) space, and takes Θ(nk log(n + k))
worst-case time and O((n + k) log(n + k)) expected
time. The runtime bound is expected over random site
positions.

4 Experimental Results

We present some experimental results that compare the
performance of our algorithm and that of Lee and Yang,
which runs in O((n + k) log(n + k)) time and also re-
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Figure 6: Lee and Yang / sweep line running time.
Each line refers to a set of sites.

quires that the query points be known in advance [9].
Both algorithms rely on the same two data structures,
which have been implemented with a red-black tree and
a binary heap.

We measured the running times with four sets of sites,
with 16, 32, 64, and 128 KP (where 1 KP stands for
1024 points). For each one of them, we used sixteen sets
of query points, with 1, 2, 4, 8, 12, 16, 24, 32, 48, 64,
96, 128, 160, 192, 224 and 256 KP. The measurements
were made on a 400 MHz Pentium II processor with a
256 MB RAM.

Fig. 6 compares both sets of results. Each line rep-
resents the quotient between the running time of the
algorithm of Lee and Yang and the running time of our
algorithm. So, our algorithm outperforms the other
when the curves are above the dashed line.

It turns out that our algorithm is the fastest when the
number of query points does not exceed four times the
number of sites. ¿From then on, the algorithm of Lee
and Yang outperforms ours. The justification is that
the high cost of building the binary search tree they use
to solve the nearest neighbour queries is amortized as
the number of query points grows. Furthermore, in all
experiments made, the running time of our algorithm
never exceeded twice the running time of the algorithm
by Lee and Yang.

5 Conclusions

We have presented an algorithm to solve the of-
fline nearest neighbour query problem, which runs in
O(m log m) expected time, where m is the total num-
ber of points (sites and query points).

We conclude that our algorithm constitutes an alterna-
tive to the algorithm of Lee and Yang. The choice of
which to use depends on the characteristics of the ap-
plication and, in particular, on the relation between the

number of query points and the number of sites. In our
case, since those numbers are of a similar magnitude,
our algorithm is the best suited for the job.
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